FRACCIONARIOS


 

COLEGIO ALBERT EINSTEIN

“La experiencia no se improvisa”

Código: GAC- PP - 02

Versión No. 02

GUÍA DE APRENDIZAJE

Fecha: 02-04-2020

Página: de


NÚMEROS FRACCIONARIOS

 

INDICACIONES:

 

·        No es necesario imprimir esta guía, si tiene la posibilidad de imprimirla lo dejo a criterio propio el hacerlo.

·        Se recomienda que por favor el estudiante haga lectura del material antes de iniciar la clase, esto le facilitará la comprensión de algunos conceptos además de que sabrá cuál es el tema que se tocará durante la cesión.

·        Las actividades aquí propuestas se deben realizar durante una clase diferente a la hora en la cual está asignada la video llamada.

·        Utilizar el útil adecuado como regla, transportador, compas o calculadora; siempre y cuando el ejercicio lo requiera.

·        El estudiante es libre de seleccionar que copiar de la guía de aprendizaje, recordando que debe haber un mínimo de información escrita en los cuadernos para su calificación al final del periodo académico. Esta semana no habrá clase de estadística con lo cual se trabajarán 2 horas de geometría.

 



Números fraccionarios

Los números fraccionarios o fracciones comunes se forman al plantear una división entre dos números naturales, teniendo en cuenta que siempre el divisor debe ser diferente de cero.

En un número fraccionario o fracción, el denominador indica las partes en que se divide la unidad y el numerador indica las partes que se toman

Los números racionales permiten expresar medidas. Cuando se compara una cantidad con su unidad, se obtiene, por lo general, un resultado fraccionario.

Plantilla de menú de cocina italiana pizza, media pizza PNG ...Plantilla de menú de cocina italiana pizza, media pizza PNG ...Por ejemplo: Si divido una pizza en dos partes, tengo dos mitades. Cada porción será 1/2 de la pizza (una parte de dos). En caso de tomar ambas porciones, volveré a tener la pizza entera (2/2= 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

Los números racionales pueden ser sumados, restados, multiplicados o divididos (excepto por cero). El resultado de estas operaciones será siempre otro número racional. Ya dominando las operaciones con números enteros debemos tener un par de conceptos claros sobre los números fraccionarios antes de hacer operaciones con ellos.

Primero conozcamos como se compone un número fraccionario, un número fraccionario se suele representar de la forma a / b; donde a recibe el nombre de numerador y b el nombre de denominador.

 

Números fraccionarios. La maravillosa historia de los números ...Numerador

 

 

Denominador


Ahora bien, los números fraccionarios se dividen en dos tipos. Una fracción se llama propia si su numerador es menor que su denominador. Una fracción se llama impropia si su numerador es mayor que su denominador.

 

Teniendo claro lo anterior, debemos comprender un nuevo concepto más a la hora de realizar una operación con números fraccionarios; aclarando que este concepto solo es aplicable cuando las operaciones son una suma o una resta.

Si realizaremos una suma o una resta entre dos fraccionarios debemos fijarnos en sus respectivos denominadores, por ejemplo:

 

 

 

Al realizar la suma se pueden presentar dos casos.

Caso número 1. Que los denominadores b y d sean dos números enteros iguales a esto se le conoce como fracciones homogéneas.

Caso número 2. Que los denominadores b y d sean dos números enteros diferentes a esto se le conoce como fracciones heterogéneas.

 

Y cada caso tiene una manera de realizar la suma respectivamente.

 

Caso número 1. Para el caso número 1 por tener denominadores iguales, la suma de dichos números seria conservar el denominador que tienen en común y realizar la adición de sus numeradores. Por ejemplo:

2 5 2 + 5 7  +  = =

3         3           3           3

 


1        8        4  +  +

3       3         3


1 + 8 + 4       13

=                       =

3                 3


 

Caso número 2. Para el caso número 2 por tener denominadores diferentes, la suma de dichos números se realizará de la siguiente manera, el denominador resulta por la multiplicación de los dos denominadores de los fraccionarios que se están sumando y en el numerador se multiplican los términos de la siguiente manera, numerador 1 por denominador 2 y numerador 2 por denominador 1.

Por ejemplo:


2        5       2 Χ 4 + 5 Χ 3  +  =

3        4               3 Χ 4


8 + 15       23

=                 =

12           12


Ocurre de igual manera si la operación a realizar es una resta, la diferencia sería que el signo presente es un menos.

 

Multiplicación

Cuando la operación que se está realizando entre dos números fraccionarios es una multiplicación se aplica lo siguiente, se realiza una multiplicación normal de los temimos en común es decir, numerador por numerador y denominador por denominador. Por ejemplo

:

2 5 2 Χ 5 10  Χ  = =

3       4       3 Χ 4        12

 


2       3

 Χ  𝑋

3       4


1       2 Χ 3𝑋1         6  =                          =

2       3 Χ 4𝑋2       24


 

 

 

División

Cuando la operación que se está realizando entre dos números fraccionarios es una división se aplica lo siguiente, se realiza una multiplicación normal de los temimos en cruz es decir, numerador 1 por denominador 2 y numerador 2 por denominador 1. Por ejemplo:

 

2 5 2 Χ 4 8  ÷  = =

3         4       3 Χ 5        15

 

Cabe recordar que los números fraccionarios representan un cociente o división con lo cual, al tener un fraccionario impropio se debe plantear la división del número para conocer si su resultado es un número entero o una expresión decimal, si es una expresión decimal dejamos planteado el fraccionario

como tal. Por ejemplo:

5                                                    5

 = 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 =

4                                                    4

 

12

= 𝑁ú𝑚𝑒𝑟𝑜 𝑒𝑛𝑡𝑒𝑟𝑜 = 3

4


Practiquemos

 

 

1.     Realizar las siguientes operaciones con números fraccionarios.

 

 


1       7

 +

2       2                                                                  21      12

5         5

7         4


1       8

 +

2       5

 

21       8


 +                                                                                                        ÷

3         2                                                                  1       12           6                                                                  3

 𝑋

4        3

11      8            7            5

                                                                                                                      ÷

3        3                                                                                                                                                   2        3

 

2.     Daniel compra una caja de galletas festival de 18 paquetes, si para el fin de semana Daniel se habrá comido 12 de los 18 paquetes que trae la caja de galletas. Escribir cual es la fracción que representa la cantidad de sobres de galletas sin destapar que le quedan a Daniel.

 

3.     Representar (colorear) la cantidad del fraccionario en la figura circular.

Fracciones para Niños | Ejercicios con Equivalentes, Operaciones y más


                                                       

 

 

Referencias

1.     Tomado de sitio web: https://definicion.de/numeros-racionales/

 

2.     Tomado de sitio web:

https://www.ejemplos.co/20-ejemplos-de-numeros-racionales/


Comentarios

Entradas populares de este blog

Bienvenida